生命科學

記憶的0與1

研究人員正逐漸了解腦中記憶的貯存規則。記憶編碼的發現,將有助於設計更聰明的電腦與機器人,甚至找出探究人類心智的新方法。

撰文/錢卓(Joe Z. Tsien)
翻譯/黃榮棋

生命科學

記憶的0與1

研究人員正逐漸了解腦中記憶的貯存規則。記憶編碼的發現,將有助於設計更聰明的電腦與機器人,甚至找出探究人類心智的新方法。

撰文/錢卓(Joe Z. Tsien)
翻譯/黃榮棋

經歷過地震的人對地震都記憶鮮明:地面搖晃、震動、變形、隆起,四處傳來轟隆聲、破裂聲與玻璃震碎的聲音,櫥櫃門扉大開,架上的書本、碗盤與擺飾掉落一地。我們會記得地震當時發生的事情,多年後依舊歷歷在目,是因為人腦就是為此而演化出來的:從重要事件中萃取出訊息,做為日後類似狀況發生時的行為指導方針。從經驗中學習的能力,讓所有動物都能適應複雜與持續變動的環境。

數十年來,神經科學家試圖了解腦如何產生記憶。我與同事利用有效的數學來分析整組新的實驗,佐以可同時記錄清醒小鼠200個神經元活性的能力,發現了一種基本機制,讓腦藉此從經驗中汲取重要訊息並將之轉換成記憶。我們的實驗結果加上越來越多的研究證據都指出,一個神經元到另一個神經元的線性訊號傳遞,並不足以解釋腦如何表現知覺與記憶(請見2007年1月號〈找尋神經編碼〉),而需要許多神經元的活動與協調。

我們的研究還指出,參與形成記憶的神經細胞群,也可以萃取出普遍化概念,讓我們能夠將日常經驗轉換成知識與想法。我們的發現讓生物學家更接近破解共通的神經密碼,腦運用這種規則,將各群電衝動轉換成知覺、記憶、知識以及最後的行為。這樣的規則可以讓研究人員發展出更順暢的人腦–機器界面、設計出新世代的聰明電腦與機器人,甚至藉由監測神經活性編寫心智密碼簿,而能解讀他人的記憶與想法。

「聰明鼠」引發的問題

我的團隊會去探討大腦編碼的方式,源自我們對學習與記憶的分子機制研究。1999年秋天,我們以遺傳工程的方法,創造了一種記憶力較好的小鼠品系。這種「聰明的」小鼠比正常小鼠學得快、記得久,我們稱牠為杜奇(Doogie),名字來自於1990年代初期美國電視劇中的天才小醫生Doogie Howser。這項研究引發了極大的興趣與爭議,甚至還上了美國《時代》雜誌的封面。但這項發現不禁讓我問:記憶究竟是什麼?

科學家知道,將知覺經驗轉換成長期記憶,需要一個稱為海馬的腦區;我們甚至知道這個過程需要哪些關鍵分子,像是我們就改變了小鼠的NMDA受體而創造出聰明鼠。但沒有人知道,腦神經細胞的活動究竟如何表現出記憶。幾年前我開始思考,我們是否能夠找到數學或生理的方法來描述記憶?是否能夠發現相關的神經網絡動力學,並在記憶形成之時「看到」其活動樣式?是否能夠在神經細胞群萃取並記錄經驗最生動細節時,找出所使用到的組織原則?

為了了解與記憶有關的神經編碼,我們首先必須設計更精密的神經監測儀器。我們想繼續用小鼠來研究,原因之一是我們最後可以用學習與記憶能力經過改造的小鼠來進行實驗,像是「聰明鼠」與記憶變差的突變鼠。研究人員曾經在清醒的猴子身上監測了幾百個神經元的活動,但研究小鼠的人一次只能記錄頂多20~30個細胞,主要是因為小鼠的腦只比一粒花生米大一點點。因此我與當時的博士後研究員林龍年(Longnian Lin)發展出了一種新的記錄方法,讓我們可以在清醒且自由活動的小鼠身上,監測更大量的個別神經元的活動。

我們設計實驗,來研究腦子最擅長的事情:記住對生命有深刻意義的事件。目睹911恐怖攻擊、地震的劫後餘生,或甚至是從迪士尼樂園13層樓高的「恐怖塔」墜下等,都是難以抹滅的記憶。因此我們發展出實驗方法,來模擬這類驚心動魄的事件。這些經驗應該會產生持久而深刻的記憶。我們推測,可能海馬中會有許多神經細胞為這些深刻的記憶編碼,因此更有可能找到能由這個經驗所活化的細胞,並收集足夠數據來釐清參與記憶過程的樣式與組織原則。

我們選擇的事件包括實驗室版本的地震(搖晃裝著小鼠的籠子)、模擬從天而降的貓頭鷹(突然對著小鼠背部噴氣),以及小型「電梯」的短暫自由落體(剛開始我們是用實驗室裡的餅乾罐當成升降梯來做實驗)。每隻小鼠會經歷每個事件七次,每次有幾小時的間隔。在事件過程中(連同休息時間)我們記錄海馬CA1區多達260個細胞的活動,這個腦區是動物與人記憶形成的關鍵所在((見雜誌第40頁〈揭露記憶編碼的開端〉的圖)。

驚嚇的活性樣式

在收集了資料之後,我們首先試著找出任何可能代表這些驚嚇事件的活性樣式。我與另一位博士後研究員歐珊(Remus Osan),利用高效率的樣式辨識方法來分析這些數據,尤其是多元判別分析法(MDA)。這種數學方法將原本有著非常多維度的問題(舉例來說,這260個細胞在事件前後的活動就有520個維度),縮減成三維空間的圖樣。遺憾的是,對傳統生物學者而言,這三個座標軸不再代表任何實質的神經活性,不過它的確繪出了一個低維度的數學空間,能藉以區辨不同事件所產生的不同樣式。

當我們把從個別記錄到的所有神經元反應,投射到這個三維空間時,出現了四個不同的網絡活性「泡泡」,其中一個表示大腦處於休息狀態、一個與地震有關、一個與噴氣有關,而另一個與墜落有關。因此,每一種驚嚇事件都會造成不同的CA1神經網絡活動樣式。我們相信,這些樣式代表這些事件中有關知覺、情緒與事實面整合後的訊息。

為了了解動物在經歷各種事件時,這些樣式是如何動態演變的,我們應用了「滑動窗口」的方式,針對每隻小鼠,每隔半秒鐘一個一個窗口往下看,進行幾小時長的記錄,並且重複對每一個半秒鐘的窗口進行MDA分析。從結果可以看出小鼠腦中在記憶每個事件的反應樣式變化。舉例來說,在經歷地震的小鼠腦中,我們可以看到整體活動從休息泡泡很快移動到地震泡泡,然後再回到休息狀態,形成特定的三角形軌跡。

這種時序分析還顯示出更有趣的事情:與這些驚嚇經驗有關的活動樣式,會在事件之後每隔數秒到數分鐘內自動產生。這些「重播」有著類似的軌跡,包括特定的幾何形狀,不過強度要比原始反應來得小。這些重現的活動樣式,證明經過海馬系統的訊息烙印在腦的記憶迴路,而且我們可以想像重播等於是事後的經驗回顧。能夠定性與定量測量記憶編碼樣式的再次活動,等於開啟了一扇門,讓我們可以監視新記憶痕跡如何穩固成為長期記憶,並在聰明鼠與學習障礙的小鼠身上,檢視這些過程受到了什麼影響。